Gene expression and distribution of Swi6 in partial aneuploids of the fission yeast Schizosaccharomyces pombe.

نویسندگان

  • Yuji Chikashige
  • Chihiro Tsutsumi
  • Kasumi Okamasa
  • Miho Yamane
  • Jun-ichi Nakayama
  • Osami Niwa
  • Tokuko Haraguchi
  • Yasushi Hiraoka
چکیده

Imbalances of gene expression in aneuploids, which contain an abnormal number of chromosomes, cause a variety of growth and developmental defects. Aneuploid cells of the fission yeast Schizosaccharomyces pombe are inviable, or very unstable, during mitotic growth. However, S. pombe haploid cells bearing minichromosomes derived from the chromosome 3 can grow stably as a partial aneuploid. To address biological consequences of aneuploidy, we examined the gene expression profiles of partial aneuploid strains using DNA microarray analysis. The expression of genes in disomic or trisomic cells was found to increase approximately in proportion to their copy number. We also found that some genes in the monosomic regions of partial aneuploid strains increased their expression level despite there being no change in copy number. This change in gene expression can be attributed to increased expression of the genes in the disomic or trisomic regions. However, even in an aneuploid strain that bears a minichromosome containing no protein coding genes, genes located within about 50 kb of the telomere showed similar increases in expression, indicating that these changes are not a secondary effect of the increased gene dosage. Examining the distribution of the heterochromoatin protein Swi6 using DNA microarray analysis, we found that binding of Swi6 within ~50 kb from the telomere occurred less in partial aneuploid strains compared to euploid strains. These results suggest that additional chromosomes in aneuploids could lead to imbalances in gene expression through changes in distribution of heterochromatin as well as in gene dosage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel type of silencing factor, Clr2, is necessary for transcriptional silencing at various chromosomal locations in the fission yeast Schizosaccharomyces pombe.

The mating-type region of the fission yeast Schizosaccharomyces pombe comprises three loci: mat1, mat2-P and mat3-M. mat1 is expressed and determines the mating type of the cell. mat2-P and mat3-M are two storage cassettes located in a 17 kb heterochromatic region with features identical to those of mammalian heterochromatin. Mutations in the swi6+, clr1+, clr2+, clr3+, clr4+ and clr6+ genes we...

متن کامل

Highly condensed chromatins are formed adjacent to subtelomeric and decondensed silent chromatin in fission yeast

It is generally believed that silent chromatin is condensed and transcriptionally active chromatin is decondensed. However, little is known about the relationship between the condensation levels and gene expression. Here we report the condensation levels of interphase chromatin in the fission yeast Schizosaccharomyces pombe examined by super-resolution fluorescence microscopy. Unexpectedly, sil...

متن کامل

Fission yeast Arp6 is required for telomere silencing, but functions independently of Swi6.

The actin-related proteins (Arps), which are subdivided into at least eight subfamilies, are conserved from yeast to humans. A member of the Arp6 subfamily in Drosophila, Arp4/Arp6, co-localizes with heterochromatin protein 1 (HP1) in pericentric heterochromatin. Fission yeast Schizosaccharomyces pombe possesses both an HP1 homolog and an Arp6 homolog. However, the function of S.pombe Arp6 has ...

متن کامل

RNAi-directed assembly of heterochromatin in fission yeast.

Heterochromatin is an epigenetically heritable and conserved feature of eukaryotic chromosomes with important roles in chromosome segregation, genome stability, and gene regulation. The formation of heterochromatin involves an ordered array of chromatin changes, including histone deacetylation, histone H3-lysine 9 methylation, and recruitment of histone binding proteins such as Swi6/HP1. Recent...

متن کامل

Tethering RITS to a Nascent Transcript Initiates RNAi- and Heterochromatin-Dependent Gene Silencing

In the fission yeast Schizosaccharomyces pombe, the RNA-Induced Transcriptional Silencing (RITS) complex has been proposed to target the chromosome via siRNA-dependent base-pairing interactions to initiate heterochromatin formation. Here we show that tethering of the RITS subunit, Tas3, to the RNA transcript of the normally active ura4+ gene silences ura4+ expression. This silencing depends on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell structure and function

دوره 32 2  شماره 

صفحات  -

تاریخ انتشار 2007